Космогония

Объяснение происхождения и динамики объектов Солнечной системы — одна из главных задач космогонии.

Объяснение происхождения и динамики объектов Солнечной системы — одна из главных задач космогонии. Смотреть картинку в полном размере.

Космогония — физическая наука, которая занимается изучением причин происхождения и процессов зарождения различных космических объектов и систем, из которых они состоят. В переводе с греческого языка «космос» означает мир, Вселенная, а «гони» — порождение.

Несмотря на нынешнее положение современной инженерии и науки в целом, ее технических возможностей недостаточно для определения действительных причин происхождения и развития различных небесных тел и систем, в том числе и Солнечной системы. Поэтому в космогонии имеют место так называемые гипотезы — научные предположения.

В отличие от космогонии, цель космологии — объяснить наблюдаемые процессы и структуру Вселенной, а также изучить ее эволюцию в целом.

Результаты наблюдений

Телескопы — главные инструменты наблюдения за космическими объектами. На фото — телескоп на острове Ла-Пальма, Канарские острова.

Телескопы — главные инструменты наблюдения за космическими объектами. На фото — телескоп на острове Ла-Пальма, Канарские острова.

Основная задача космогонических гипотез – объяснение однообразного движения и состава небесных тел. В силу наших ограниченных возможностей наблюдения космических объектов, ученые применяют свои гипотезы, прежде всего, к Солнечной системе. За относительно короткое время наблюдения за Солнечной системой был собран внушительный объем данных, которого достаточно, чтобы проследить в нашей системе ряд закономерностей. Последние говорят о том, что космические объекты, принадлежащие нашей планетарной системе, действительно образуют некую систему, а не являются лишь набором ничем не связанных тел.

  1. В первую очередь, Солнечная система связана гравитационной силой, о чем говорит вращение всех планет системы вокруг Солнца.
  2. Орбиты большинства планет нашей планетарной системы лежат почти в одной плоскости, которая к тому же проходит практически через экватор Солнца.
  3. Все объекты данной планетарной системы перемещаются вокруг ее сердцевины в одном направлении (против часовой стрелки, с точки зрения северного полюса), в т.ч. и карликовые. Из этого следует физическое предположение о том, что все объекты нашей планетарной системы были некогда приведены в движение единым механизмом.

    Материалы по теме

    3D Модель Солнечной системы

  4. Подавляющая часть планет вращается вокруг своей оси в направлении орбитального движения. Что можно отметить как еще один признак единого механизма происхождения.
  5. У каждой планеты, кроме Меркурия и Венеры, есть один или несколько спутников, которые располагаются близко к плоскостям экваторов этих планет.
  6. Расположение планет в нашей планетарной системе также имеет свои особенности: ближе к светилу расположены планеты земной группы, дальше – газовые. У внешнего края системы находится пояс Койпера, который состоит из таких малых тел как кометы или астероиды, а также четырех карликовых планет.

Все вышеперечисленные закономерности указывают на то, что Солнечная система – это определенная космическая единица, которая возникла как следствие некоего единого процесса, вопросом которого и занимается космогония.

Основные космогонические гипотезы

Титульный лист "Всеобщей естественной истории и теории неба". Первое издание, 1755 год.

Титульный лист «Всеобщей естественной истории и теории неба». Первое издание, 1755 год.

Первой так называемой космогонической гипотезой является труд выдающегося философа Иммануила Канта, а именно — книга «Всеобщая естественная история и теория неба», вышедшая в свет в 1755 году. Согласно его предположению, наша планетарная система возникла из некой туманности – хаотично расположенных отдельных частиц. Постепенно, за счет гравитации, эти частицы скапливались в различных местах, образуя тем самым некие точки сгущения материи. Некоторые из частиц, которые не падали к центрам этих точек, получали боковое движение, в результате которого сгусток материи туманности обретал вращательное движение. Из-за последнего процесса туманность сдавливалась с двух сторон, приобретая форму, близкую к плоскости. Из упомянутых сгустков материи было образовано центральное тело, сердцевина системы  – Солнце, а также все другие космические объекты нашей планетарной системы. Именно Иммануилу Канту принадлежит известное выражение: «Дайте мне материю, и я покажу вам, как из нее должен образоваться мир».

Следующим мыслителем, который намеревался описать процесс зарождения Солнечной системы стал Пьер-Симон Лаплас в начале XIX века. В то время до французского физика и астронома труды Канта не дошли, и его гипотеза была результатом собственного анализа и математических расчетов. Спустя столетие его гипотеза была дополнена Отто Юльевичем Шмидтом.

Образование Солнечной системы по Лапласу

Образование Солнечной системы по Лапласу

Согласно Лапласу и Шмидту, туманность, из которой образовалась наша планетарная система – это огромных размеров раскаленная атмосфера Солнца. Равномерное же вращение Солнца и его атмосферы существовало всегда. Далее в результате постепенного сжатия атмосферы вращение данной системы ускоряется. Большинство материи атмосферы «падает» на Солнце, но значительная ее часть не имеет достаточной скорости, чтобы отделиться от общей массы, и скачками вырывается обратно в плоскости экватора. Эта часть материи начинает образовывать туманные вращающиеся кольца, которые впоследствии станут планетами. Однако, в случае такого формирования вращение планет вокруг своей оси должно быть обратным существующему. Гипотеза объясняет изменение направления вращения приливами от вращающегося Солнца. Приливы, сталкиваясь с планетами, замедляли их вращение, после чего меняли его в обратном направлении. Аналогично образовываются и спутники вокруг каждой из планет.

Гипотеза Лапласа-Шмидта имеет несколько важных недостатков:

  • Туманное облако, формирующее нашу планетную систему, имело недостаточную плотность для осуществления равномерного вращения.
  • Материя не обязана отрываться от Солнца скачками и в области экватора.
  • Согласно физическим законам вращающиеся туманные кольца вероятнее всего рассеются, при этом возможно сформируют ряд малых тел, вроде астероидов, но не планеты.

 

Особенность работы Шмидта заключается в том, что он намеревался определить первичный состав туманности и последующие его распределения. Так, туманность, по его предположению, являлось не газовым или пылевым, а газопылевым облаком, в основном, состоящем из водорода и гелия, а также сотой доли примесей иных химических элементов. Далее близлежащие к Солнцу пылинки нагревались и выделяли газ, который под действием давления света и потоков солнечного ветра удалялся от центра планетарной системы и накапливался на дальних пылинках. Вблизи же Солнца остались наиболее тяжелые пылинки. Таким образом, вещество распределилось в диске Солнечной системе и образовало две планетарные группы: земную и газовых гигантов.

Солнечная система во время планетообразования в представлении художника

Солнечная система во время планетообразования в представлении художника

Дальнейшие исследования

Помимо трех вышеперечисленных космогонических гипотез рядом ученых было выдвинуто несколько иных, которые оказались менее состоятельными, и, в лучшем случае несколько дополняли упомянутые модели. Так теория пылевых колец считается применимой лишь к поясу астероидов, а планеты и их спутники вероятнее всего являются продуктом отделения некоего клуба материи от общей массы. Если масса клуба была относительно невелика, то он разрывался близлежащим массивным телом, как случилось и с кольцом Сатурна.

При помощи современных технологий ученым удалось добыть значительно больше информации о Солнечной системе, чем имелось два века назад. В 50-х годах прошлого столетия научным сообществом было признано, что планеты сформировались из холодной газо-пылевой среды, как и утверждал в своих работах Отто Шмидт. Также, опираясь на проведенные наблюдения, было выявлено, что около половины туманностей, схожих с той, из которой сформировалась Солнечная система, состоят не из отдельных атомов водорода, а из целых молекул.

Сверхновая, вспыхнувшая в 1604 году.

Сверхновая, вспыхнувшая в 1604 году.

Позже, в результате анализа метеоритного вещества, стало известно, что в возникновении и развитии молекулярно-пылевых облаков значительную роль играют взрывы сверхновых. Благодаря ударной волне такого взрыва и выбросу некоторой массы вещества звезды облако стремительно сжимается в туманность. Последующие измерения метеоритного состава дали ученым основания полагать о существования трех взрывов сверхновых около нашей туманности, которые произошли примерно два, пять и более пяти миллиардов лет до начала момента образования нашей планетарной системы.

Так как состав облака, из которого образовалась Солнечная система, включает и различные тяжелые элементы, то вероятнее всего на его формирование напрямую повлияли взрывы сверхновых. Согласно существующей модели Вселенной, ее первичная материя состояла лишь из водорода и гелия. Иные же элементы синтезировались в звездах так называемого первого поколения, также изначально состоящих из водорода и гелия. Впоследствии взрыв сверхновых выбрасывал «новые» более тяжелые элементы в космическое пространство, которые и вошли в состав протосолнечной туманности. Из этих же элементов состоят планеты земной группы, в том числе и сама Земля. Они же в некоторой доле присутствуют и в нашем организме.

По этому поводу современный американский астрофизик и космолог Лоуренс Краусс сказал: «…мы все сделаны из звездной пыли. Вас бы здесь не было, если бы звезды не взорвались».


comments powered by HyperComments

Подпишись на рассылку лучших статей от Spacegid.com. Без спама.

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 706
Система Orphus