Управляемый термоядерный синтез

«Мы сказали, что поместим Солнце в коробку. Идея прекрасна. Но проблема в том, что мы не знаем, как создать эту коробку» — Пьер Жиль де Жен, лауреат нобелевской премии по физике 1991 года.

История становления задачи

В то время, как тяжёлых элементов, требующихся для ядерных реакций на Земле и в целом в космосе довольно мало, лёгких элементов для термоядерных реакций очень много как на Земле, так и в космосе. Поэтому идея использовать термоядерную энергию во благо человечества пришла практически сразу с пониманием процессов, лежащих в её основе – это сулило поистине безграничные возможности, так как запасов термоядерного топлива на Земле должно было хватить на десятки тысяч лет вперёд.

Уже в 1951 году появились два основных направления развития термоядерных реакторов: Андреем Сахаровым и Игорем Таммом была разработана архитектура токамака в котором рабочая камера представляла из себя тор, в то время как Лайманом Спитцером была предложена архитектура стеллатора более замысловатой конструкции по форме более всего напоминающая лист Мёбиуса перевёрнутый не один, а несколько раз.

Простота принципиальной конструкции токамака позволила длительное время развивать это направление за счёт повышения характеристик обычных и сверхпроводящих магнитов, а также путём постепенного увеличения размеров реактора. Но с повышением параметров плазмы постепенно стали также проявляться и проблемы с её нестабильным поведением, которые тормозили процесс.

Сложность конструкции стеллатора и вовсе привела к тому что после первых экспериментов в 50-х годах развитие этого направления на долгое время остановилось. Новое дыхание оно получило совсем недавно с появлением современных систем автоматизированного проектирования, которые позволили спроектировать стеллатор Wendelstein 7-X с необходимыми для его работы параметрами и точностью конструкции.

Физика процесса и проблемы в его реализации

Атомы железа имеют максимальную энергию связи на нуклон – то есть показатель энергии которую нужно затратить чтобы разделить атом на его составляющие нейтроны и протоны, делённый на их общее количество. Все атомы с меньшей и большей массой имеют этот показатель ниже железа:

При этом в термоядерных реакциях слияния лёгких атомов вплоть до железа выделяется энергия, а масса образующегося атома становится слегка меньше суммы масс исходных атомов на величину, соотносящуюся с выделяемой энергией по формуле E=mc² (так называемый дефект массы). Таким же образом выделяется энергия при ядерных реакциях деления атомов тяжелее железа.

При реакциях слияния атомов выделяется огромная энергия, но для того чтобы извлечь эту энергию нам в начале необходимо приложить определённое усилие для преодоления сил отталкивания между атомными ядрами которые являются положительно заряженными (преодолеть кулоновский барьер). После того как нам удалось сблизить пару атомов на необходимое расстояние в действие вступает сильное ядерное взаимодействие, которое связывает нейтроны и протоны. Для каждого вида топлива кулоновский барьер для начала реакции отличается также, как и отличается оптимальная температура реакции:

При этом первые термоядерные реакции атомов начинают фиксироваться задолго до достижения средней температурой вещества этого барьера благодаря тому, что кинетическая энергия атомов подвержена распределению Максвелла:

Но реакция при относительно низкой температуре (порядка нескольких млн °C) идёт крайне медленно. Так скажем в центре Солнца температура достигает 14 млн °C, но удельная мощность термоядерной реакции в таких условиях составляет только 276,5 Вт/м³, а для полного расходования своего топлива Солнцу требуются несколько млрд лет. Такие условия являются неприемлемыми для термоядерного реактора, так как при таком низком уровне выделения энергии мы неизбежно будем затрачивать на нагрев и сжатие термоядерного топлива больше, чем будем получать от реакции взамен.

По мере роста температуры топлива всё большая доля атомов начинает обладать энергией, превышающий кулоновский барьер и эффективность реакции растёт, достигая своего пика. С дальнейшим повышением температуры скорость реакции снова начинает падать уже за счёт того, что кинетическая энергия атомов становится слишком большой и они «проскакивают» мима друг друга не в состоянии удержаться сильным ядерным взаимодействием.

Материалы по теме

Состояние плазмы

Таким образом решение как получить энергию из управляемой термоядерной реакции было получено довольно быстро, но вот реализация этой задачи затянулась на полвека и так ещё до конца и не закончена. Причина этого кроется в поистине безумных условиях, в которые оказалось необходимо поместить термоядерное топливо – для положительного выхода от реакции его температура должна была составлять несколько десятков млн °C.

Такую температуру физически не могли выдержать никакие стенки, но эта проблема почти сразу привела и к её решению: так как разогретое до таких температур вещество является горячей плазмой (полностью ионизованным газом) которое заряжено положительно, то решение оказалось лежащим на поверхности – нам просто надо было поместить такую разогретую плазму в сильное магнитное поле, которое будет удерживать термоядерное топливо на безопасном расстоянии от стенок.

Прогресс на пути его реализации

Исследования по данной теме идут в нескольких направлениях сразу:

  1. с помощью использования сверхпроводящих магнитов учёные стараются сократить энергию, затрачиваемую на зажигание и поддержание реакции;
  2. с помощью новых поколений сверхпроводников повышается индукция магнитного поля внутри реактора, которая позволяет удерживать плазму с более высокими показателями плотности и температуры, что увеличивает удельную мощность реакторов на единицу их объёма;
  3. исследования в области горячей плазмы и успехи в сфере вычислительной техники позволяют лучше контролировать потоки плазмы, тем самым приближая термоядерные реакторы к их теоретическим пределам эффективности;
  4. прогресс в предыдущей области также позволяет дольше удерживать плазму в стабильном состоянии, что увеличивает эффективность реактора за счёт того, что нам не надо так часто разогревать плазму вновь.

Не смотря на все трудности и проблемы, лежавшие на пути к управляемой термоядерной реакции, эта история уже приближается к своему финалу. В энергетике принято использовать показатель EROEI – energy return on energy investment (соотношение затраченной энергии при производстве топлива к тому объёму энергии, который мы из него получаем в итоге) для расчёта эффективности топлива. И в то время как EROEI угля продолжает расти, то этот показатель у нефти и газа достиг своего пика в середине прошлого века и теперь неуклонно падает за счёт того, что новые месторождения этих топлив находятся во всё в более труднодоступных местах и на всё больших глубинах:

При этом наращивать производство угля мы также не можем по той причине, что получение энергии из него является очень грязным процессом и буквально уносит жизни людей прямо сейчас от различных заболеваний лёгких. Так или иначе мы сейчас стоим на пороге заката эры ископаемых топлив – и это не происки экологов, а банальные экономические расчёты при взгляде в будущее. При этом EROI у экспериментальных термоядерных реакторов, появившихся также в середине прошлого века, неуклонно росли и в 2007 году достигли психологического барьера в единицу – то есть в этом году человечеству впервые удалось получить посредством термоядерной реакции больше энергии, чем затратить на её осуществление. И несмотря на то что на реализацию реактора ITER, эксперименты с ним и производство уже первой демонстрационной термоядерной электростанции DEMO на основе полученного при реализации ITER опыта потребуется ещё много времени. Уже нет никаких сомнений в том, что за такими реакторами находится наше будущее.

Критика исследований

Основная критика исследований в области термоядерных реакторов основана на том, что исследования идут крайне медленно. И это правда – от первых экспериментов до производства безубыточной термоядерной реакции нам потребовалось целых 66 лет. Но суть проблемы тут заключается в том, что финансирование таких исследований никогда не достигало необходимого уровня – вот пример оценок Администрации энергетических исследований и разработок США по уровню финансирования проекта постройки термоядерного реактора и времени его завершения:

Как видно по этому графику – удивительно не то что мы до сих пор не имеем коммерческих термоядерных реакторов, производящих электроэнергию, а то, что мы вообще смогли добиться какого-то положительного выхода энергии из экспериментальных реакторов на данный момент.

Только благодаря совместной кооперации всех развитых стран в лице Евросоюза, России, США, Китая, Японии и Индии удалось проспонсировать такой проект как ITER, который должен привести нас в дальнейшем к электростанции DEMO и сотням других термоядерных электростанций, которые заменят нам в будущем иссякающие запасы легкодоступных ископаемых топлив.


comments powered by HyperComments

Подпишись на рассылку лучших статей от Spacegid.com. Без спама.
Нажимая на "Подписаться", вы даете согласие на обработку персональных данных

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 665
Система Orphus