Нейтрино

Сверхновая SN 1987A

Сверхновая SN 1987A, от которой впервые были зарегистрированны внегалактические нейтрино

Нейтрино – квант нейтрального излучения, нейтральная фундаментальная частица с небольшой массой, спин которой ½ ħ. Нейтрино принимает участие лишь в гравитационном и слабом взаимодействии, относится к классу лептонов (см. Стандартная модель).

История открытия нейтрино

История нейтрино берет начало в исследованиях бета-распада – такого вида радиоактивного распада, при котором ядро атома излучает бета-частицу, то есть электрон или позитрон. Как было уже известно в 1920-х годах, согласно модели атома, описанной Нильсом Бором, вокруг ядра атома располагается некая электронная оболочка. Электроны в этой оболочке находятся на разных так называемых энергетических уровнях, и для перехода между ними требуется определенная энергия. Таким образом, при бета-распаде электроны, вылетающие с атома, должны были нести в себе энергию, кратную той, которая потребовалась для перехода между различными энергетическими уровнями, т.е. нести дискретный спектр энергии. Данное утверждение строится на основе закона сохранения энергии. Однако в эксперименте английского физика Джеймса Чедвика было показано, что спектр энергий вылетающих электронов непрерывный, словно ядро излучает электроны с самой разной энергией, и даже не кратной энергетическим уровням.

Фотография с V Сольвеевского конгресса 1927 год

Фотография с V Сольвеевского конгресса 1927 год

Подобные противоречия к 1930-му году донельзя заинтересовали научное сообщество. Ведь пока решение этой задачи не найдется, истинность закона сохранения энергии останется под вопросом. Тот же Нильс Бор даже предположил, что энергия на самом деле не сохраняется и фундаментальный закон природы возможно неверен. Но в декабре 1930-го года свою гипотезу выдвинул венский физик-теоретик — Вольфганг Паули. Он положил, что электрон уносит число энергии, кратное энергии перехода, а остаток выпадает на некую другую частицу, которую назвал нейтроном. В 1932-м году Д. Чедвик открывает иную нейтральную частицу, входящую в состав ядра атома, и называет ее нейтроном. В следующем году на Солвеевском конгрессе, рассматривающем проблемы физики и химии, Паули объяснил механизм бета-распада с описанной им частицей, нейтроном. Во избежание путаницы в определении двух нейтронов, название частицы, описанной Паули, взяли из работ Энрико Ферми (1933-1934 г.), где итальянский физик называл частицу – нейтрино (с итальянского «нейтрончик»).

Общие сведения

Одно из первых наблюдений взаимодействия нейтрино в пузырьковой камере

Одно из первых наблюдений взаимодействия нейтрино в пузырьковой камере

Нейтрино – это лептоны, которые входят в Стандартную модель. Существует три типа нейтральных частиц – нейтрино, а также их три античастицы, каждый из которых соответствует одному из трех лептонов, имеющих электрический заряд:

  • Электронное нейтрино. Первое открытое нейтрино, а потому относится к первому поколению лептонов. Оно рождается в процессе бета-распада и высвобождает остаточную энергию, «не взятую» электронном, по этой причине и получило свое название.
  • Мюонное нейтрино – второй тип, описанный в 1940-х годах, и экспериментально обнаруженный в 1962-м году. Зачастую оно излучается в реакциях с участием космических лучей и при распаде π-мезонов с высокими энергиями.
  • Тау-нейтрино – соответствует тау-лептону, открытому в 1975-м году, и вместе с ним является лептоном третьего поколения. Экспериментально обнаружена в 2000-м году и стала предпоследней частицей, предсказанной Стандартной моделью.

Нейтрино имеет очень малое сечения взаимодействия с веществом, а потому обладает большой проникающей способностью. Например, чтобы со 100%-ной вероятностью «захватить» нейтрино при помощи железной стены, ее толщина должна достигать 1018 метров (108 св. лет), что в 25 раз больше расстояния до ближайшей звезды — Проксима Центавра.

Поляризация и лептонное число

Важным свойством частицы в квантовой механике является  поляризация спина (о том, что такое спин – читайте здесь). Спин имеет направление, и если оно перпендикулярно направлению импульса частицы, то ее называют поперечно поляризованной, если же параллельно – то поляризация продольна. В свою очередь, если при продольной поляризации спин направлен в сторону импульса, то поляризация зовется «правой», наоборот – «левой». В результате образовался закон сохранения четности, согласно которому частицы с правой и левой поляризацией – равнозначны, и должны встречаться в природе в равном количестве.

За сложными математическими конструкциями скрываются законы природы, но как вскоре оказалось, они нарушаются нейтрино. Удивительно, но за все время исследований ученые обнаруживали только левополяризованные нейтрино и правополяризованные антинейтрино, что противоречит закону сохранения четности. Благодаря трудам физиков-теоретиков, казалось, истинный закон может быть спасен, но лишь в том случае, если считать нейтрино безмассовой частицей.

Другим важным физическим утверждением является закон сохранения лептонного числа, который был экспериментально подтвержден и основывается на Стандартной модели. Он гласит о том, что в замкнутой системе разница лептонов и их античастиц сохраняется. Как следствие – появились т.н. флейворные числа  для трех типов нейтрино и соответствующих им лептонов. Например, в замкнутой системе должна сохраняться разница между суммой мюонов с мюонными нейтрино, и антимюонов с мюонными антинейтрино.

Но в 2015-м году была официально подтверждена теория нейтринных осцилляций, которые возможны лишь в том случае, когда нарушается закон сохранения четности и сохранения лептонного заряда.

Нейтринные осцилляции

Осциляции электронного нейтрино

Осцилляции электронного нейтрино. Черный цвет обозначает электронное нейтрино, синий — мюонное, а красный тау-нейтрино.

Одной из основных физических задач, связанных с нейтрино является так называемая «проблема солнечных нейтрино». Как известно, в центре нашей звезды происходят ядерные реакции, вследствие которых должны образовываться электронные нейтрино. Имея теоретическую модель Солнца, ученые высчитали число электронных нейтрино, которые должны быть излучены звездой и зарегистрированы земными детекторами. Однако, согласно наблюдениям, которые ведутся с конца 60-х годов, количество искомых частиц в три раза меньше ожидаемого, что есть значительной погрешностью и означает неверное понимание солнечного механизма.

Не желая изменять модель Солнца, ученые выдвинули гипотезу о том, что нейтрино превращается в некую другую частицу, которая не регистрируется детекторами, а именно, недавно открытые мюонные и тау-нейтрино. Подобные осцилляции возможны с одним важным условием – наличие массы у нейтрино.

Нейтринный телескоп

Детектор размещён в японской лаборатории на глубине в 1 км в цинковой шахте Камиока, в 290 км к северу от Токио

Данный феномен наблюдался двумя обсерваториями с гигантскими детекторами: японской Super-Kamiokande (г. Камиока) и канадской SNO (Садбери). Первая обсерватория позволяет фиксировать мюонные и электронные нейтрино. Учитывая полученные результаты и некоторые особенности атмосферы, японцы обнаружили, что количество мюонных нейтрино неким образом зависит от расстояния, которое прошли нейтральные частицы. То есть по пути к детекторам какая-то их часть пропадает.

Позже, в 1993-м году, канадская обсерватория в Садбери, способная различать уже все три типа нейтрино, определила, что общее число этих частиц, излучаемых Солнцем, равняется предсказанному количеству. Подобное утверждение отлично согласовывается с теорией нейтринных осцилляций и объясняет недостаточное количество электронных нейтрино.

Материалы по теме

Бозон Хиггса

За обнаружение нейтринных осцилляций в 2015-м году Нобелевской премией по физике были награждены Такааки Кадзита, работающий на детекторе Super- Kamiokande, и Артур Макдональд, сотрудник обсерватории Садбери. Но данное открытие определенно указывает на наличие двух важных проблем: нарушение закона сохранения лептонного заряда из-за превращения одного типа нейтрино в другого, и закона сохранения четности – из-за наличия массы, хоть и не большой (в 180 тыс. раз меньше массы электрона).

Применение

Основные области применения знаний о нейтрино – астрономия и астрофизика. Дело в том, что так же, как и Солнце, большинство других звезд излучают свою энергию в основном в виде потока нейтрино. Вместе с этим, в силу слабого поглощения этих частиц различными космическими телами, дальность их полета может значительно превышать расстояния, проходимые фотоном. Таким образом, человечество сможет изучать более удаленные звезды и прочие космические тела.

Кроме небесных объектов ученые смогут изучать и недра Земли, которые тоже излучают нейтрино в результате радиоактивности ядра, и позволят подробнее определить состав нашей планеты.

Детекторы, мгновенно регистрирующие нейтрино, которые вылетают из ядерного реактора на АЭС, приносили бы более подробную информацию о том, как проходит ядерная реакция. Это помогло бы улучшить контроль мощности и состава топлива, тем самым повысило бы уровень безопасности.

Примечательно, что потоки нейтрино могут использоваться для связи с подводными лодками и прочими объектами, сокрытыми за веществом. Слабовзаимодействующие частицы, испускаемые «источником», пролетали бы сквозь воду и достигали бы детекторов, расположенных на субмарине, после чего переводились бы в другой вид информации. Развитием этой технологии занимаются по большей части военные спецслужбы, и согласно подсчетам, передача информации таким образом будет значительно быстрее (в сотни раз).

Интересные факты о нейтрино

  • В 2011-м году, в эксперименте нейтринных осцилляций ЦЕРНа, было обнаружено, что частицы, пролетевшие сквозь Землю из Швеции в Италию, вероятно, превысили скорость света на 0,00248 %.
    Тоннель ускорителя БАК

    27-километровый подземный тоннель, предназначенный для размещения ускорителя БАК

    Это вызвало серьезный переполох в научном сообществе. Но сенсация быстро была опровергнута самим же ЦЕРНом, когда стало известно, что «плохо вставленный разъем оптического кабеля» привел к неточному подсчету времени полета.

  • Ежесекундно сквозь человеческое тело пролетает 1014 нейтрино, и это только те, что излучаются Солнцем.
  • Как и большинство нейтринных детекторов, Super-Kamiokande располагается в цинковой шахте под землей, на глубине в 1000 метров. Герметичное помещение лаборатории представляется в виде цилиндра с диаметров 40 м. и высотой 42 м, сконструированное из нержавеющей стали и заполненное очищенной водой – 50 000 тонн. На его стенах располагается 11 тыс. фотоэлектронных умножителей– грибоподобных приборов для повышения чувствительности детектора. Система очень восприимчива к свету и обрабатывает каждый квант, проходящий сквозь нее.

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 14003