Кварк-глюонная плазма

Кварк-глюонная плазма - компьютерная модель

Кварк-глюонная плазма — компьютерная модель

Кварк-глюонная плазма – состояние вещества, при котором последнее представляет собой набор глюонов, кварков и антикварков. Образование такой плазмы протекает аналогично образованию обычной плазмы.

Атомы обычного вещества в большинстве своем нейтральны, так как заряд их ядра компенсируется электроном, вращающимся вокруг ядра. С повышением температуры атомы ионизируются, то есть электрон получает достаточно энергии, чтобы покинуть свою орбиту, в результате чего имеется отдельно положительно заряженное ядро и отрицательно заряженный электрон. Такое состояние вещества и называется плазмой.

В случае с кварк-глюонной плазмой – компенсируется так называемый «цвет». Цвет – одна из характеристик кварков которые составляют частицу – адрон, и глюонов – которые «склеивают» кварки (являются переносчиками сильного взаимодействия).

Конфайнмент

Кварки и глюоны, составляющие адроны, в обычных условиях не способны находиться в свободном состоянии. Так, если попытаться «растащить» их на расстояние, большее, чем размер адрона (10-13 см), энергия кварков и глюонов быстро и неограниченно возрастает. Явление невозможности разделить кварки называется «конфайнмент», что с английского переводится как «тюремное заключение». Описывается данное явление с использованием уже упоминаемой ранее характеристики – цвета. Таким образом в свободном состоянии могут существовать лишь составные из кварков объекты, которые имеют белый цвет. Например, протон состоит из кварков, цвета которых: зеленый, синий и красный, что в сумме дает белый.

Комбинация цветных зарядов

Комбинация цветных зарядов

Однако, существуют условия, при которых конфайнмент работает иначе. К таким условиям относится сверхнизкая температура или сверхвысокое давление. В случае таких условий волновые функции двух нуклонов (общее название протонов и нейтронов, составляющих ядро атома) перекрываются, говоря простым языком – эти частицы как бы «налезают друг на друга». Вследствие этого кварки перестают различать свои родные нуклоны и начинают свободно перемещаться по всему объему ядра, состоящего из этих нуклонов. Таким образом конфайнмент имеет место, однако объем его «тюремной клетки» в разы увеличивается. Следовательно, чем больше нуклонов соприкасаются и «накладываются», тем больше размер «клетки». Подобное явление может достигать макроскопических масштабов и более.

Существование и получение

Кварк-глюонная плазма возникает в результате «наложения» множества нуклонов друг на друга, вследствие чего кварки свободно перемещаются внутри объема ядра, состоящего из этих нуклонов. Подобная плазма существует в первую очередь в условиях повышенного давления, как например в ядрах нейтронных звезд. Однако, в 2005-м году американским ученым удалось получить кварк-глюонную плазму на коллайдере тяжелых ионов RHIC. На данном ускорителе удалось столкнуть ядра на скорости 99.99% скорости света, в результате столкновения выделилось 20000 ГэВ энергии, было достигнуто давление 1025–1030 атмосферных давлений и температура 109–1010 К. Позже подобный эксперимент повторили на Большом адронном коллайдере в ЦЕРНЕ при больших энергиях.

Эксперимент ALICE ЦЕРН

Эксперимент ALICE ЦЕРНа участвует в исследовании кварк-глюонной плазмы

Также, согласно предположениям некоторых космологов, вещество Вселенной в первые мгновения после Большого взрыва (около 10-11 с) находилось в состоянии кварк-глюонной плазмы, в результате чего после взрыва возникла барионная асимметрия Вселенной.


comments powered by HyperComments

Подпишись на рассылку лучших статей от Spacegid.com. Без спама.
Нажимая на "Подписаться", вы даете согласие на обработку персональных данных

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 204
Система Orphus