Расстояния в космосе

Расстояние между Землей и Луной.

Расстояние между Землей и Луной громадно, но кажется крохотным в сравнении с масштабами космоса.

Космические просторы, как известно, довольно масштабны, а потому астрономы не используют для их измерения метрическую систему, привычную для нас. В случае с расстоянием до Луны (384 000 км) километры еще могут быть применимы, однако если выразить в этих единицах расстояние до Плутона, то получится 4 250 000 000 км, что уже менее удобно для записи и вычислений. По этой причине у астрономов в ходу иные единицы измерения расстояния, о которых читайте ниже.

Астрономическая единица

Наименьшей из таких единиц является астрономическая единица (а.е.). Исторически так сложилось, что одна астрономическая единица равняется радиусу орбиты Земли вокруг Солнца, иначе – среднее расстояние от поверхности нашей планеты до Солнца. Данный метод измерения был наиболее подходящим для изучения структуры Солнечной системы в XVII веке. Ее точное значение 149 597 870 700 метра. Сегодня астрономическая единица используется в расчетах с относительно малыми длинами. То есть при исследовании расстояний в пределах Солнечной системы или других планетных систем.

Световой год

Несколько большей единицей измерения длины в астрономии является световой год. Он равен расстоянию, которое проходит свет в вакууме за один земной, юлианский год. Подразумевается также нулевое влияние гравитационных сил на его траекторию. Один световой год составляет около 9 460 730 472 580 км или 63 241 а.е. Данная единица измерения длины используется лишь в научно-популярной литературе по той причине, что световой год позволяет читателю получить примерное представление о расстояниях в галактическом масштабе. Однако из-за своей неточности и неудобности световой год практически не используется в научных работах.

Материалы по теме

Световой год

Парсек

Наиболее практичной и удобной для астрономических вычислений является такая единица измерения расстояния как парсек. Чтобы понять ее физический смысл, следует рассмотреть такое явление как параллакс. Его суть состоит в том, что при движении наблюдателя относительно двух отдаленных друг от друга тел, видимое расстояние между этими телами также меняется. В случае со звездами происходит следующее. При движении Земли по своей орбите вокруг Солнца визуальное положение близких к нам звезд несколько меняется, в то время как дальние звезды, выступающие в роли фона, остаются на тех же местах. Изменение положения звезды при смещении Земли на один радиус ее орбиты, называется годичный параллакс, который измеряется в угловых секундах.

Тогда один парсек равен расстоянию до звезды, годичный параллакс которой равен одной угловой секунде – единице измерения угла в астрономии. Отсюда и название «парсек», совмещенное из двух слов: «параллакс» и «секунда». Точное значение парсека равняется 3,0856776·1016 метра или 3,2616 светового года. 1 парсек равен примерно 206 264,8 а. е.

Метод лазерной локации и радиолокации

Эти два современных метода служат для определения точного расстояния до объекта в пределах Солнечной системы. Он производится следующим образом. При помощи мощного радиопередатчика посылается направленный радиосигнал в сторону предмета наблюдения. После чего тело отбивает полученный сигнал и возвращает на Землю. Время, потраченное сигналом на преодоление пути, определяет расстояние до объекта. Точность радиолокации – всего несколько километров. В случае с лазерной локацией, вместо радиосигнала лазером посылается световой луч, который позволяет аналогичными расчетами определить расстояние до объекта. Точность лазерной локации достигается вплоть до долей сантиметра.

Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган

Метод тригонометрического параллакса

Наиболее простым методом измерения расстояния до удаленных космических объектов является метод тригонометрического параллакса. Он основывается на школьной геометрии и состоит в следующем. Проведем отрезок (базис) между двумя точками на земной поверхности. Выберем на небосводе объект, расстояние до которого мы намерены измерить, и определим его как вершину получившегося треугольника. Далее измеряем углы между базисом и прямыми, проведенными от выбранных точек до тела на небосводе. А зная сторону и два прилежащих к ней угла треугольника, можно найти и все другие его элементы.

Тригонометрический параллакс

Величина выбранного базиса определяет точность измерения. Ведь если звезда расположена на очень большом расстоянии от нас, то измеряемые углы будут почти перпендикулярны базису и погрешность в их измерении может значительно повлиять на точность посчитанного расстояния до объекта. Поэтому следует выбирать в качестве базиса максимально отдаленные точки на Земле. Изначально в роли базиса выступал радиус Земли. То есть наблюдатели располагались в разных точках земного шара и измеряли упомянутые углы, а угол, расположенный напротив базиса назывался горизонтальным параллаксом. Однако позже в качестве базиса стали брать большее расстояние – средний радиус орбиты Земли (астрономическая единица), что позволило измерять расстояние до более отдаленных объектов. В таком случае, угол, лежащий напротив базиса, называется годичным параллаксом.

Данный метод не очень практичен для исследований с Земли по той причине, что из-за помех земной атмосферы, определить годичный параллакс объектов, расположенных более чем на расстоянии в 100 парсек – не удается.

Однако в 1989 год Европейским космическим агентством был запущен космический телескоп Hipparcos, который позволил определить звезды на расстоянии до 1000 парсек. В результате полученных данных ученые смогли составить трехмерную карту распределения этих звезд вокруг Солнца. В 2013 году ЕКА запустило следующий спутник – Gaia, точность измерения которого в 100 раз лучше, что позволяет наблюдать все звезды Млечного Пути. Если бы человеческие глаза обладали точностью телескопа Gaia, то мы имели бы возможность видеть диаметр человеческого волоса с расстояния 2 000 км.

Метод стандартных свечей

Для определения расстояний до звезд в других галактиках и расстояний до самих этих галактик используется метод стандартных свечей. Как известно, чем дальше от наблюдателя расположен источник света, тем более тусклым он кажется наблюдателю. Т.е. освещенность лампочки на расстоянии 2 м будет в 4 раза меньше, чем на расстоянии 1 метр.Это и есть принцип, по которому измеряется расстояние до объектов методом стандартных свечей. Таким образом, проводя аналогию между лампочкой и звездой, можно сравнивать расстояния до источников света с известными мощностями.

Масштабы разведанной существующими методами Вселенной впечатляют. Смотреть инфографику в полном размере.

В качестве стандартных свечей в астрономии выступают объекты, светимость (аналог мощности источника) которых известна. Это может быть любого рода звезда. Для определения ее светимости астрономы измеряют температуру поверхности, опираясь на частоту ее электромагнитного излучения. После чего, зная температуру, позволяющую определить спектральный класс звезды, выясняют ее светимость при помощи диаграммы Герцшпрунга-Рассела. Затем, имея значения светимости и измерив яркость (видимую величину) звезды, можно посчитать расстояние до нее. Такая стандартная свеча позволяет получить общее представление о расстоянии до галактики, в которой она находится.

Однако данный метод достаточно трудоемкий и не отличается высокой точностью. Поэтому астрономам удобнее использовать в качестве стандартных свечей космические тела с уникальными особенностями, для которых светимость известна изначально.

Уникальные стандартные свечи

Цефеида PTC Puppis

Цефеиды – наиболее используемые стандартные свечи, представляющие собой переменные пульсирующие звезды. Изучив физические особенности этих объектов, астрономы узнали, что цефеиды обладают дополнительной характеристикой – периодом пульсации, который легко можно измерить и который соответствует определенной светимости.

В результате наблюдений ученым удается измерить яркость и период пульсации таких переменных звезд, а значит и светимость, что позволяет высчитать расстояние до них. Нахождение цефеиды в иной галактике дает возможность относительно точно и просто определить расстояние до самой галактики. Поэтому данный тип звезд часто именуется «маяками Вселенной».

Несмотря на то, что метод цефеид является наиболее точным на расстояниях до 10 000 000 пк, его погрешность может достигать 30%. Для повышения точности потребуется как можно больше цефеид в одной галактике, но и в таком случае погрешность сводится не менее чем к 10%. Причиной тому служит неточность зависимости период-светимость.

Цефеиды — «маяки Вселенной».

Кроме цефеид в качестве стандартных свечей могут использоваться и другие переменные звезды с известными зависимостями период-светимость,  а также для наибольших расстояний — сверхновые с известной светимостью. Близким по точности к методу цефеид является метод, с красными гигантами в роли стандартных свеч. Как выяснилось, ярчайшие красные гиганты имеют абсолютную звездную величину в достаточно узком диапазоне, которая позволяет посчитать светимость.

Расстояния в цифрах

Расстояния в Солнечной системе:

Расстояния в Млечном Пути и за его пределами:

Exit mobile version