Космологическая постоянная

Лямбда-членКосмологическая постоянная – безразмерная константа, которая была введена в уравнения общей теории относительности Альбертом Эйнштейном (1917 год) для противодействия силам гравитации во Вселенной.

Составление ОТО

В период с 1915-й по 1916-й год А.Эйнштейн опубликовал свою величайшую работу, наиболее успешную теорию гравитации, ставшей фундаментом для космологии, применяемую и по сей день, в том числе Международным астрономическим союзом – общую теорию относительности (ОТО). В рамках этой теории А.Эйнштейн вывел уравнение, которое связывает кривизну пространства-времени с материей, веществом, заполняющим рассматриваемую искривленную область. Как и большинство физиков-теоретиков, великий ученый стремился свести свое уравнение к максимально простому виду, что собственно у него успешно получилось.

Работая над ОТО, А.Эйнштейн заметил один недостаток – согласно его уравнениям Вселенная должна либо расширяться либо сжиматься, что противоречило астрономическим наблюдениям и представлениям о Вселенной того времени. По этой причине им был введен дополнительный множитель, безразмерная константа, задача которой состояла в том, чтобы противостоять силам тяготения, гравитации, то бишь действовать в обратном направлении. Таким образом, А.Эйнштейн смог получить решение для статической и неизменной Вселенной. Значение же космологической постоянной, иначе Лямбда-члена (в силу обозначения константы греческой буквой Лямбда), предполагалось достаточно мизерным, чтобы не замечать его проявление в природе.

Черная дыра — еще одно открытие Теории относительности

Модель Фридмана и несостоятельность Лямбда-члена

В 1922-м году выдающийся советский физик Александр Фридман опубликовал свою научную работу, в которой описывалась нестационарная модель Вселенной. Основываясь на уравнениях ОТО, Фридман вывел несколько уравнений, которые в зависимости от принимаемых параметров прогнозируют несколько сценариев эволюции Вселенной. В случае со значением космологической постоянной существует три варианта, каждый из которых не предусматривает стационарную Вселенную:

Сценарии эволюции Вселенной по Фридману

Так или иначе, первое время космологическая модель Фридмана была раскритикована А.Эйнштейном, так как в случае с эволюционирующей Вселенной космологическая константа могла бы без последствий быть изъята из уравнений ОТО. Спустя несколько лет, в 1927-м году бельгийский астроном Жорж Леметр, наблюдая за галактиками различной удаленности, определил, что Вселенная расширяется. Еще позже, в 1929-м году американский астрофизик Эдвин Хаббл сформулировал свой одноименный закон, описывающий расширение Вселенной, которое также смог определить по красному смещению в спектре галактик. В результате упомянутых открытий А.Эйнштейн был вынужден принять модель Вселенной Фридмана. С того времени Лямбда-член в уравнениях ОТО в масштабах космологии не учитывался, а в других областях не делал заметный вклад в уравнения, а потому вводился лишь в связи с эстетическими взглядами самих ученых.

Ускоренное расширение и возвращение Лямбда-члена

В 1998-м году две независимые группы ученых, ведущие наблюдение за сверхновыми в других галактиках, обнаружили, что расстояние до этих звезд значительно больше прогнозируемого законом Хаббла. Из этого последовал вывод о том, что Вселенная расширяется с ростом скорости, то бишь ускоренно. Ранее считалось, что в силу наличия материи и гравитации расширение Вселенной замедляет свой темп (Λ = 0). Вскоре после других наблюдений, приведших к аналогичному выводу, ученые убедились в том, что существует некая неизвестная ранее энергия, действующая в противовес гравитации. Последнюю прозвали «темной энергией».

Ускоренное расширение Вселенной. График роста расстояний

Чтобы данное открытие согласовывалось с ОТО ученые вновь вернули Лямбда-член в уравнения Эйнштейна, при этом указав ее значение как положительное. Таким образом, темная энергия плотно связана с космологической константой. Дальнейшие попытки описать природу темной энергии привели физиков к тому, что Лямбда-член не просто дополнительный множитель, введенный в уравнения ОТО для состыковки теоретической конструкции с наблюдениями. Наиболее простое объяснение темной энергии указывает на то, что любой объем пространства имеет некую присущую ему энергию, называемую «энергией чистого вакуума», а космологическая постоянная выступает в роли плотности этой энергии. Таким образом, Альберт Эйнштейн, некогда называвший Лямбда-член «величайшей ошибкой» за всю его научную деятельность, косвенно предсказал наличие энергии, приводящей к ускоренному расширению Вселенной.

Также следует упомянуть, что как выяснилось учеными после жизни Эйнштейна, космологическая постоянная давала возможность существовать Вселенной в стабильном состоянии, лишь некоторое время при определенных условиях. И при первом же незначительном изменении в условиях начался бы либо процесс сжатия, либо процесс расширения Вселенной.

Наглядная модель расширения Вселенной со времен Большого Взрыва

Космологическая константа сегодня

Наибольший вклад в науку космологическая постоянная делает в области квантовой физики и космологии. Так на основании космологической модели Фридмана сформировалась современная модель Вселенной, под названием Лямбда-CDM, где космологическая постоянная является неотъемлемой частью теоретической конструкции и описывает свойства темной энергии.

Однако, несмотря на свой вклад, точное значение космологической константы остается под вопросом. Данная проблема даже имеет устоявшееся выражение в физике – «проблема космологической постоянной».Она состоит в том, что значение Лямбда-члена получается теоретически предсказать при помощи квантовой физики, но это значение будет немыслимо большим. При такой космологической константе энергия вакуума привела бы Вселенную к столь быстрому расширению, что не смогли бы сформироваться даже структуры вроде галактик. Для формирования последних значение Лямбда-члена должно быть как минимум на 120 порядков меньше (то есть в 10120 раз).

Еще большую путаницу вносит относительно низкое значение космологической постоянной, получаемое при изучении эффекта разлета галактик. Одним из решений данной проблемы является предположение о том, что кроме энергии вакуума в космологическую постоянную вносит вклад еще какое-то неизученное слагаемое, некая неизвестная величина.

Exit mobile version