Сколько лететь от Земли до Марса

Сколько лететь от Земли до МарсаМарс является второй по близости к Земле планетой Солнечной Системы после Венеры. Благодаря красноватому цвету, планета получила имя бога войны. Одни из первых телескопических наблюдений (Д. Кассини, 1666) показали, что период вращения этой планеты близок к земным суткам: 24 часа 40 минут. Для сравнения точный период вращения Земли составляет 23 часа 56 минут 4 секунды, а для Марса, это значение равно 24 часа 37 минут 23 секунды. Совершенствование телескопов позволило обнаружить на Марсе полярные шапки, и начать систематическое картографирование поверхности Марса.

Предыстория

Снимки Марса с помощью космического телескопа Хаббл во время великого противостояния 2003 года

Снимки Марса с помощью космического телескопа Хаббл во время великого противостояния 2003 года

В конце 19 века оптические иллюзии породили гипотезу о наличии на Марсе разветвленной сети каналов, которые созданы высокоразвитой цивилизацией. Эти предположения совпали с первыми спектроскопическими наблюдениями Марса, которые ошибочно приняли линии кислорода и водяного пара земной атмосферы за линии марсианской атмосферы.

Художественное изображение старта к Марсу героев романа А. Толстого “Аэлита”

Художественное изображение старта к Марсу героев романа А. Толстого “Аэлита”

В результате этого в конце 19 века и начале 20 века стала популярна идея о наличии развитой цивилизации на Марсе. Наиболее яркими иллюстрациями этой теории стали художественные романы “Война миров” Г. Уэльса и “Аэлита” А. Толстого. В первом случае воинственные марсиане осуществляли попытку захвата Земли с помощью гигантской пушки, которая выстреливала цилиндры с десантом в сторону Земли. Во втором случае земляне для путешествия на Марс используют ракету, работающую на бензине. Если в первом случае межпланетный перелет занимает несколько месяцев, то во втором речь идет о 9-10 часах полета.

Расстояние между Марсом и Землей изменяется в широких пределах: от 55 до 400 млн. км. Обычно планеты сближаются раз в 2 года (обычные противостояния), но в связи с тем, что орбита Марса обладает большим эксцентриситетом, раз в 15-17 лет случаются более тесные сближения (великие противостояния).

В таблице хорошо видно, что и великие противостояния различаются по причине того что и орбита Земли не является круговой. В связи с этим выделяют и величайшие противостояния, которые случаются примерно раз в 80 лет (к примеру, в 1640, 1766, 1845, 1924 и 2003 годах). Интересно отметить, что люди начала 21 века стали свидетелями самого величайшего противостояния за несколько тысяч лет. Во время противостояния 2003 года расстояние между Землей и Марсом было на 1900 км меньше, чем в 1924 году. С другой стороны считается, что противостояние 2003 года было минимальным, за последние 5 тысяч лет.

Великие противостояния Марса
Таблица сближений
Двадцать наибольших сближений Марса с Землей

Великие противостояния сыграли большую роль в истории изучения Марса, так как они позволяли получить наиболее детальные изображения Марса, а так же упрощали межпланетные перелеты.

К началу космической эры наземная инфракрасная спектроскопия значительно уменьшила шансы на наличие жизни на Марсе: было определено, что главной компонентой атмосферы является углекислый газ, а содержание кислорода в атмосфере планеты является минимальным. Кроме того была измерена средняя температура на планете, которая оказалась сравнима с полярными регионами Земли.

Первая радиолокация Марса

Приемная антенна радиолокатора АДУ-1000 (“Плутон”) в Крыму

Приемная антенна радиолокатора АДУ-1000 (“Плутон”) в Крыму

60-ые годы 20 века отметились значительным прогрессом в изучении Марса, так как началась космическая эра, а так же появилась возможность осуществления радиолокации Марса. В феврале 1963 года в СССР с помощью радиолокатора АДУ-1000 (“Плутон”) в Крыму, состоящего из восьми 16-метровых антенн была проведена первая успешная радиолокация Марса. В этот момент красная планета находилась в 100 млн. км от Земли. Передача радиолокационного сигнала проходила на частоте 700 мегагерц, а общее время прохождения радиосигналов от Земли до Марса и обратно составило 11 минут. Коэффициент отражения у поверхности Марса оказался меньше, чем у Венеры, хотя временами он достигал 15 %. Это доказывало, что на Марсе есть ровные горизонтальные участки размером больше одного километра.

Возможные траектории полета к Марсу

Траектории полета к Марсу

Траектории полета к Марсу

Полет по прямой линии к Марсу невозможен, так как на траекторию любого космического аппарата будет оказывать гравитационное влияние Солнце. Поэтому возможно три варианта траектории: эллиптическая, параболическая и гиперболическая.

Эллиптическая (гомановская) траектория полета к Марсу

Теория простейшей траектории полета к Марсу (эллиптической), которая обладает минимальными затратами топлива была разработана в 1925 году немецким ученым Вальтером Гоманом. Несмотря на то, что эта траектория была независимо предложена советскими учеными Владимиром Ветчинкиным и Фридрихом Цандером, траектория ныне широко известна как гомановская.

Гомановская траектория полета к Марсу

Гомановская траектория полета к Марсу

Фактически эта траектория представляет собой половинный отрезок эллиптической орбиты вокруг Солнца, перицентр (ближайшая точка орбиты к Солнцу) которой находится вблизи точки отправления (планета Земля), а апоцентр (самая удаленная точка орбиты от Солнца) вблизи точки прибытия (планета Марс). Для перехода на простейшую гомановскую траекторию полета к Марсу требуется приращение скорости околоземного спутника Земли на 2.9 км в секунду (превышение второй космической скорости).

Наиболее благоприятные окна для полета к Марсу с баллистической точки зрения случаются примерно раз в 2 года и 50 суток. В зависимости от начальной скорости полета с Земли (от 11.6 км в секунду до 12 км в секунду) продолжительность полета к Марсу изменяется от 260 до 150 суток. Уменьшение времени межпланетного перелета происходит не только по причине увеличения скорости, но и уменьшения длины дуги эллипса траектории. Но при этом увеличивается скорость встречи с планетой Марс: c 5.7 до 8.7 км в секунду, что усложняет полет необходимостью безопасного снижения скорости: к примеру, для выхода на марсианскую орбиту или с целью посадки на поверхность Марса.

Таблица параметров возможных траекторий перелета к Марсу по гомановским траекториями
Полет по эллиптическим (гомоновским) траекториям между Землей и Марсом с возвращением на Землю займет примерно 2 года 8 месяцев

Примеры продолжительности полета к Марсу по эллиптической траектории

За 60 лет космической эры к Марсу было отправлено 50 космических миссий автоматических зондов (из них 2 аппарата, которые использовали Марс лишь для гравитационного пролета – “Даун” и “Розетта”). Только 34 космических зонда из этой полсотни смогли выйти на межпланетную траекторию полета к Марсу. Продолжительность перелета к Марсу для этих зондов (так же включены наиболее известные неудачные миссии):

  • “Марс-1” – 230 суток (потеря связи на 140-ые сутки полета)
  • “Маринер-4” – 228 суток
  • “Зонд-2” – 249 суток (потеря связи на 154-ые сутки полета)
  • “Маринер-5” — 156 суток
  • “Маринер-6”- 131 суток

х) 2х“Марс-69“ – 180 суток (авария РН)

  • “Марс-2” – 191 суток
  • “Марс-3” – 188 суток
  • “Маринер-9” – 168 суток
  • “Марс-4” – 204 суток
  • “Марс-5” – 202 суток
  • “Марс-6” – 219 суток
  • “Марс-7” – 212 суток
  • “Викинг-1” – 304 суток
  • “Викинг-2” – 333 суток
  • “Фобос-1” – 257 суток (потеря связи на 57-ые сутки полета)
  • “Фобос-2” – 257 суток
  • “Марс Обсервер” – 333 суток (потеря связи на 330-ые сутки полета)

х) “Марс-96” – 300 суток (авария РБ)

18) “Марс Пасфайндер” – 212 суток

19) “Марс Глобал Сервеер” – 307 суток

20) “Нозоми” (1-ая попытка) – 295 суток

20) “Нозоми” (2-ая попытка) – 178 суток (потеря связи на 173-ие сутки полета)

21) “Марс Клаймед Орбитер” – 286 суток

22) “Марс Полар Лэндер” – 335 суток

23) “Марс Одиссей 2001” – 200 суток

24) “Спирит” – 208 суток

25) “Оппортьюнити” – 202 суток

26) “Марс Экспресс” – 206 суток

27) MRO – 210 суток

28) “Феникс” – 295 суток

29) “Кюриосити” – 250 суток

х) “Марс Фобос Грунт” – 325 суток (остался на околоземной орбите)

30) MAVEN – 308 суток

31) MOM – 298 суток

32)”Экзомарс 2016” – 219 суток

Как видно из этого списка наиболее коротким перелетом к Марсу стал полет небольшого (412 кг) пролетного аппарата “Маринер-6“ в 1969 году: 131 сутки. Самые длительные перелеты совершили орбитальные и посадочные миссии “Марс Полар Лэндер” (335 суток), “Марс Обсервер” и “Викинг-2” (по 333 суток). Очевидно, что данные миссии были на пределе возможностей существующих ракет. Такой же длительный перелет (11 месяцев) должна была совершить российская миссия “Марс Фобос Грунт” при возвращении с грунтом Фобоса к Земле.

Миссия "Фобос-Грунт"

Миссия «Фобос-Грунт»

Миссия “Марс Фобос Грунт“ стала первой попыткой отработать полет к Марсу и обратно. Длительность такого перелета должна была составить 2 года и 10 месяцев. Похожие проекты разрабатывались в СССР в 70-ые годы 20 века, только они предусматривали доставку грунта не с поверхности Фобоса, а с поверхности Марса. В связи с этим в них предусматривалось использовать либо сверхтяжелую ракету Н1 либо два пуска тяжелой РН “Протон”.

Кроме того можно отметить длительные перелеты между Землей и Марсом, которые совершили два зонда для изучения небольших объектов Солнечной Системы: Dawn (509 суток) и “Розетта“ (723 суток).

Условия перелета к Марсу

Условия межпланетного пространства на траектории полета к Марсу являются одними из наиболее изученных среди разных областей межпланетного пространства Солнечной Системы. Уже первый межпланетный перелет между Землей и Марсом, выполненный советской станцией “Марс-1“ в 1962-1963 годах показал наличие метеорных потоков: микрометеоритный детектор станции регистрировал удары микрометеоритов каждые 2 минуты на удалении в 20-40 млн. км от Земли. Так же измерения этой же станции позволили измерить интенсивность магнитных полей в межпланетном пространстве: 3-9 наноТесл.

Так как существуют многочисленные проекты полета человека на Марс, то особую роль в таких исследованиях занимают измерения космической радиации в межпланетном пространстве. Для этого на борту наиболее совершенного марсианского ровера (“Кюриосити”) был установлен детектор радиационной обстановки (RAD). Его измерения показали, что даже короткий межпланетный перелет представляет собой большую опасность для здоровья человека.

Накопленная доза радиации во время перелета примерно в сотню раз больше, чем получаемая за год обычным жителем и почти в 2 раза выше, чем во время полугодового полета на МКС
Особенно сильно опасность вырастает во время вспышек на Солнце
Для сравнения за первые 300 суток работы на поверхности Марса детектор RAD зарегистрировал только один всплеск радиации из-за солнечной активности
Источники радиации в межпланетном пространстве связаны с солнечным ветром и космическими лучами галактического происхождения

Ещё более интересный эксперимент по изучению влияния условий длительного межпланетного перелета на живые организмы должен был пройти в рамках неудавшейся российской миссии “Марс-Фобос-Грунт”. Его возвращаемый аппарат в дополнение к пробам грунта нес 100-граммовый модуль LIFE с десятью различными микроорганизмами. Эксперимент должен был позволить оценить влияние межпланетной среды за трехлетний космический полет.

Изучение возможности полета человека к Марсу

Параллельно с первыми попытками запуска автоматических зондов к Марсу с 1960 года в СССР и США проходили разработки проектов пилотируемого полета к Марсу с ориентиром на запуск в 1971 году. Эти проекты отличались массой межпланетного корабля в сотни тонн и наличием особого отсека с высоким уровнем защиты от космической радиации, где экипаж должен был укрываться во время солнечных вспышек. Электропитание таких кораблей должно было осуществляться от ядерных реакторов или очень крупных солнечных батарей. В рамках подготовки к таким полетам были проведены наземные эксперименты по изоляции людей (“Марс-500” и марсианские полигоны в канадской Арктике, Гавайях и т.д.) и эксперименты по созданию замкнутых биосфер (“БИОС” и “Биосфера-2”). Как видно из названия эксперимента “Марс-500” существует вариант полета к Марсу примерно за 500 суток, что в 2 раза короче, чем при классической схеме (2-3 года).

Схема 550-суточного полета от РКК “Энергия”, который предусматривает использование траекторий, касающихся орбиты Венеры
Другой вариант похожей схемы для 540-суточного полета, где время пребывания в системе Марса сокращается всего до 10 суток

Как видно в сравнении с классической схемой время пребывания в системе Марса в этом случае сокращается с 450 до 30 суток.

Параболическая траектория полета к Марсу

В случае полета к Марсу по параболической траектории, начальная скорость космического аппарата должна сравняться с третьей космической скоростью: 16.7 км в секунду. В этом случае перелет между Землей и Марсом составит всего 70 суток. Но при этом скорость встречи с планетой Марс возрастет до 20.9 км в секунду. Скорость космического аппарата относительно Солнца при полете по параболе уменьшится с 42.1 км в секунду у Земли до 34,1 км в секунду у Марса.

Полет c возращением на Землю займет по параболической траектории всего 5 месяцев

Полет c возращением на Землю займет по параболической траектории всего 5 месяцев

Но при этом энергетические затраты для разгона и торможения возрастут примерно в 4.3 раза по сравнению с полетом по эллиптической (гомановской) траектории.

Актуальность подобных полетов вырастает в связи с сильной радиацией в межпланетном пространстве. Хотя полет по параболической траектории требует большее количество топлива, с другой стороны, он снижает требования к радиационной защите и количеству запасов кислорода, воды и пищи для экипажа космического корабля. Параболические траектории находятся в очень узком диапазоне, поэтому гораздо интереснее рассмотреть широкий диапазон гиперболических траекторий, во время которых космический аппарат будет двигаться к Марсу со скоростью убегания из Солнечной Системы, которая превышает третью космическую скорость.

Гиперболическая траектория полета к Марсу

Человечество уже освоило возможность разгона космических аппаратов до гиперболических скоростей. За 60 лет космической эры осуществлены 5 запусков космических зондов в межзвездное пространство (“Пионер-10“, “Пионер-11“, “Вояджер-1”, “Вояджер-2” и “Новые Горизонты”). Так “Новым Горизонтам“ потребовалось всего 78 суток для полета с Земли до марсианской орбиты. Недавно открытый первый межзвездный объект “Oumuamua” обладает ещё большей гиперболической скоростью: пространство между земной и марсианской орбитой он пролетел всего за 2 недели.

Материалы по теме

Марс — планета бога войны

В настоящее время разрабатываются проекты полетов к Марсу по гиперболическим траекториям. Здесь большие надежды возлагаются на электрические (ионные) ракетные двигатели, у которых скорость истечения может достигать 100 км в секунду (для сравнения у химических двигателей этот показатель ограничен 5 км в секунду). В настоящее время это направление быстро развивается. Так ионные двигатели зонда Dawn смогли обеспечить приращение скорости больше 10 километров в секунду, используя лишь полтонны ксенона за 10 лет миссии, что является рекордом для любой межпланетной станции. Главным минусом таких двигателей является небольшая мощность, вызванная использованием маломощных источников энергии (солнечных батарей). Так европейской станции SMART-1 для перелета с геопереходной орбиты к Луне потребовался целый год. Для сравнения обычные лунные станции осуществляли перелет к Луне всего за несколько суток. В связи с этим оснащение межпланетных кораблей ионными двигателями будет тесно связано с развитием космических ядерных энергетических установок. Так ожидается, что двигатель VASIMR (Variable Specific Impulse Magnetoplasma Rocket) мощностью в 200 мегаватт и работающий на аргоне сможет осуществлять 40-суточные полеты человека к Марсу. Для сравнения подводные лодки класса “Сифульф“ используют 34-мегаваттный ядерный реактор, а авианосец класса “Джеральд Форд” 300-мегаватнный ядерный реактор.

Ещё более заманчивые перспективы в области полетов к Марсу обещает проект двигателя Х3, который теоретически способен доставить человека на Марс всего за 2 недели. Недавно этот двигатель, разрабатываемый учеными Мичиганского университета, ВВС США и NASA показал рекордную мощность (100 кВт) и тягу (5.4 ньютона). Предшествующий рекорд тяги для ионного двигателя составлял 3.3 ньютона.

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 24512